Evaluating Feature Selection for SVMs in High Dimensions
نویسندگان
چکیده
We perform a systematic evaluation of feature selection (FS) methods for support vector machines (SVMs) using simulated high-dimensional data (up to 5000 dimensions). Several findings previously reported at low dimensions do not apply in high dimensions. For example, none of the FS methods investigated improved SVM accuracy, indicating that the SVM built-in regularization is sufficient. These results were also validated using microarray data. Moreover, all FS methods tend to discard many relevant features. This is a problem for applications such as microarray data analysis, where identifying all biologically important features is a major objective.
منابع مشابه
تعیین ماشینهای بردار پشتیبان بهینه در طبقهبندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک
Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...
متن کاملClassification of Polarimetric SAR Images Based on Optimum SVMs Classifier Using Bees Algorithm
Because of Polarimetric Synthetic Aperture Radar (PolSAR) contains the different features which relate to the physical properties of the terrain in unique ways, polarimetric imagery provides an efficient tool for the classification of the complex geographical areas. Support Vector Machines (SVMs) are particularly attractive in the remote sensing field due to their ability to handle the nonlinea...
متن کاملLaguerre Kernels –Based SVM for Image Classification
Support vector machines (SVMs) have been promising methods for classification and regression analysis because of their solid mathematical foundations which convey several salient properties that other methods hardly provide. However the performance of SVMs is very sensitive to how the kernel function is selected, the challenge is to choose the kernel function for accurate data classification. I...
متن کاملMax-Margin feature selection
Many machine learning applications such as in vision, biology and social networking deal with data in high dimensions. Feature selection is typically employed to select a subset of features which improves generalization accuracy as well as reduces the computational cost of learning the model. One of the criteria used for feature selection is to jointly minimize the redundancy and maximize the r...
متن کاملVariable Selection for Support Vector Machines in Moderately High Dimensions.
The support vector machine (SVM) is a powerful binary classification tool with high accuracy and great flexibility. It has achieved great success, but its performance can be seriously impaired if many redundant covariates are included. Some efforts have been devoted to studying variable selection for SVMs, but asymptotic properties, such as variable selection consistency, are largely unknown wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006